Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein J ; 39(5): 449-460, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33037984

RESUMO

Chorismate serves as a crucial precursor for the synthesis of many aromatic compounds essential for the survival and virulence in various bacteria and protozoans. Chorismate synthase, a vital enzyme in the shikimate pathway, is responsible for the formation of chorismate from enolpyruvylshikimate-3-phosphate (EPSP). Moraxella catarrhalis is reported to be resistant to many beta-lactam antibiotics and causes chronic ailments such as otitis media, sinusitis, laryngitis, and bronchopulmonary infections. Here, we have cloned the aroC gene from Moraxella catarrhalis in pET28c and heterologously produced the chorismate synthase (~ 43 kDa) in Escherichia coli BL21(DE3) cells. We have predicted the three-dimensional structure of this enzyme and used the refined model for ligand-based virtual screening against Supernatural Database using PyRx tool that led to the identification of the top three molecules (caffeic acid, gallic acid, and o-coumaric acid). The resultant protein-ligand complex structures were subjected to 50 ns molecular dynamics (MD) simulation using GROMACS. Further, the binding energy was calculated by MM/PBSA approach using the trajectory obtained from MD simulation. The binding affinities of these compounds were validated with ITC experiments, which suggest that gallic acid has the highest binding affinity amongst these three phytochemicals. Together, these results pave the way for the use of these phytochemicals as potential anti-bacterial compounds.


Assuntos
Antibacterianos/química , Proteínas de Bactérias , Simulação por Computador , Sistemas de Liberação de Medicamentos , Farmacorresistência Bacteriana , Simulação de Dinâmica Molecular , Moraxella catarrhalis/enzimologia , Fósforo-Oxigênio Liases , Compostos Fitoquímicos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Humanos , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/química
2.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32661075

RESUMO

Chlorogenic acid (CGA) is a phenolic compound with well-known antibacterial properties against pathogens. In this study, structural and biochemical characterization was used to show the inhibitory role of CGA against the enzyme of the shikimate pathway, a well-characterized drug target in several pathogens. Here, we report the crystal structures of dehydroquinate synthase (DHQS), the second enzyme of the shikimate pathway, from Providencia alcalifaciens (PaDHQS), in binary complex with NAD and ternary complex with NAD and CGA. Structural analyses reveal that CGA occupies the substrate position in the active site of PaDHQS, which disables domain movements, leaving the enzyme in an open and catalysis-incompetent state. The binding analyses by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) show that CGA binds to PaDHQS with KD (equilibrium dissociation constant) values of 6.3 µM and 0.5 µM, respectively. In vitro enzyme inhibition studies show that CGA inhibits PaDHQS with a Ki of 235 ± 21 µM, while it inhibits the growth of Providencia alcalifaciens, Moraxella catarrhalis, Staphylococcus aureus, and Escherichia coli with MIC values of 60 to 100 µM. In the presence of aromatic amino acids supplied externally, CGA does not show the toxic effect. These results, along with the observations of the inhibition of the 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) regulatory domain by CGA in our previous study, suggest that CGA binds to shikimate pathway enzymes with high affinity and inhibits their catalysis and can be further exploited for designing novel drug-like molecules.IMPORTANCE The shikimate pathway is an attractive target for the development of herbicides and antimicrobial agents, as it is essential in plants, bacteria, and apicomplexan parasites but absent in humans. The enzymes of shikimate pathway are conserved among bacteria. Thus, the inhibitors of the shikimate pathway act on wide range of pathogens. We have identified that chlorogenic acid targets the enzymes of the shikimate pathway. The crystal structure of dehydroquinate synthase, the second enzyme of the pathway, in complex with chlorogenic acid and enzymatic inhibition studies explains the mechanism of inhibition of chlorogenic acid. These results suggest that chlorogenic acid has a good chemical scaffold and have important implications for its further development as a potent inhibitor of shikimate pathway enzymes.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Ácido Clorogênico/farmacologia , Fósforo-Oxigênio Liases/química , Providencia/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Cinética , Fósforo-Oxigênio Liases/antagonistas & inibidores , Ligação Proteica , Providencia/enzimologia , Ácido Chiquímico/metabolismo
3.
Future Microbiol ; 14: 969-980, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31382783

RESUMO

Aim: A structural model of chorismate synthase (CS) from the pathogenic fungus Candida albicans was used for virtual screening simulations. Methods: Docking, molecular dynamics, cell growth inhibition and protein binding assays were used for search and validation. Results: Two molecules termed CS8 and CaCS02 were identified. Further studies of the minimal inhibitory concentration demonstrated fungicidal activity against Paracoccidioides brasiliensis with a minimal inhibitory concentration and minimal fungicidal concentration of 512 and 32 µg·ml-1 for CS8 and CaCS02, respectively. In addition, CaCS02 showed a strong synergistic effect in combination with amphotericin B without cytotoxic effects. In vitro studies using recombinant CS from P. brasiliensis showed IC50 of 29 µM for CaCS02 supporting our interpretation that inhibition of CS causes the observed fungicidal activity.


Assuntos
Antifúngicos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Paracoccidioides/efeitos dos fármacos , Fósforo-Oxigênio Liases/antagonistas & inibidores , Sequência de Aminoácidos , Anfotericina B/farmacologia , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Candida albicans/enzimologia , Chlorocebus aethiops , Sinergismo Farmacológico , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Paracoccidioides/enzimologia , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica , Células Vero
4.
Nat Commun ; 10(1): 545, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710081

RESUMO

Antimetabolites are small molecules that inhibit enzymes by mimicking physiological substrates. We report the discovery and structural elucidation of the antimetabolite 7-deoxy-sedoheptulose (7dSh). This unusual sugar inhibits the growth of various prototrophic organisms, including species of cyanobacteria, Saccharomyces, and Arabidopsis. We isolate bioactive 7dSh from culture supernatants of the cyanobacterium Synechococcus elongatus. A chemoenzymatic synthesis of 7dSh using S. elongatus transketolase as catalyst and 5-deoxy-D-ribose as substrate allows antimicrobial and herbicidal bioprofiling. Organisms treated with 7dSh accumulate 3-deoxy-D-arabino-heptulosonate 7-phosphate, which indicates that the molecular target is 3-dehydroquinate synthase, a key enzyme of the shikimate pathway, which is absent in humans and animals. The herbicidal activity of 7dSh is in the low micromolar range. No cytotoxic effects on mammalian cells have been observed. We propose that the in vivo inhibition of the shikimate pathway makes 7dSh a natural antimicrobial and herbicidal agent.


Assuntos
Anabaena/crescimento & desenvolvimento , Antimetabólitos/farmacologia , Arabidopsis/crescimento & desenvolvimento , Cianobactérias/metabolismo , Heptoses/farmacologia , Redes e Vias Metabólicas , Ácido Chiquímico/metabolismo , Anabaena/efeitos dos fármacos , Antifúngicos/farmacologia , Arabidopsis/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Heptoses/isolamento & purificação , Herbicidas/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/metabolismo , Fotossíntese/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Synechococcus/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-30348661

RESUMO

Paracoccidioidomycosis (PCM), caused by Paracoccidioides, is a systemic mycosis with granulomatous character and a restricted therapeutic arsenal. The aim of this work was to search for new alternatives to treat largely neglected tropical mycosis, such as PCM. In this context, the enzymes of the shikimate pathway constitute excellent drug targets for conferring selective toxicity because this pathway is absent in humans but essential for the fungus. In this work, we have used a homology model of the chorismate synthase (EC 4.2.3.5) from Paracoccidioides brasiliensis (PbCS) and performed a combination of virtual screening and molecular dynamics testing to identify new potential inhibitors. The best hit, CP1, successfully adhered to pharmacological criteria (adsorption, distribution, metabolism, excretion, and toxicity) and was therefore used in in vitro experiments. Here we demonstrate that CP1 binds with a dissociation constant of 64 ± 1 µM to recombinant chorismate synthase from P. brasiliensis and inhibits enzymatic activity, with a 50% inhibitory concentration (IC50) of 47 ± 5 µM. As expected, CP1 showed no toxicity in three cell lines. On the other hand, CP1 reduced the fungal burden in lungs from treated mice, similar to itraconazole. In addition, histopathological analysis showed that animals treated with CP1 displayed less lung tissue infiltration, fewer yeast cells, and large areas with preserved architecture. Therefore, CP1 was able to control PCM in mice with a lower inflammatory response and is thus a promising candidate and lead structure for the development of drugs useful in PCM treatment.


Assuntos
Antifúngicos/farmacologia , Descoberta de Drogas/métodos , Paracoccidioides/efeitos dos fármacos , Paracoccidioidomicose/tratamento farmacológico , Fósforo-Oxigênio Liases/antagonistas & inibidores , Quinolinas/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Itraconazol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Simulação de Dinâmica Molecular , Paracoccidioides/classificação , Paracoccidioides/isolamento & purificação , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/microbiologia , Análise de Sequência de Proteína
6.
Chembiochem ; 20(3): 394-407, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30395379

RESUMO

The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) is a key regulator of cellular motility, the cell cycle, and biofilm formation with its resultant antibiotic tolerance, which can make chronic infections difficult to treat. Therefore, diguanylate cyclases, which regulate the spatiotemporal production of c-di-GMP, might be attractive drug targets for control of biofilm formation that is part of chronic infections. We present a FRET-based biochemical high-throughput screening approach coupled with detailed structure-activity studies to identify synthetic small-molecule modulators of the diguanylate cyclase DgcA from Caulobacter crescentus. We identified a set of seven small molecules that regulate DgcA enzymatic activity in the low-micromolar range. Subsequent structure-activity studies on selected scaffolds revealed a remarkable diversity of modulatory behavior, including slight chemical substitutions that reverse the effects from allosteric enzyme inhibition to activation. The compounds identified represent new chemotypes and are potentially developable into chemical genetic tools for the dissection of c-di-GMP signaling networks and alteration of c-di-GMP-associated phenotypes. In sum, our studies underline the importance of detailed mechanism-of-action studies for inhibitors of c-di-GMP signaling and demonstrate the complex interplay between synthetic small molecules and the regulatory mechanisms that control the activity of diguanylate cyclases.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Fósforo-Oxigênio Liases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Caulobacter crescentus/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/metabolismo , Estrutura Molecular , Fósforo-Oxigênio Liases/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
7.
J Bioinform Comput Biol ; 16(6): 1850027, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30567475

RESUMO

Shikimate pathway plays an essential role in the biosynthesis of aromatic amino acids in various plants and bacteria, which consists of seven key enzymes and they are all attractive targets for antibacterial agent development due to their absence in humans. The Staphylococcus aureus dehydroquinate synthase (SaDHQS) is involved in the second step of shikimate pathway, which catalyzes the NAD + -dependent conversion of 3-deoxy-D-arabino-heptulosonate-7-phosphate to dehydroquinate via multiple steps. The enzyme active site can be characterized by two spatially separated subpockets 1 and 2, which represent the reaction center of substrate adduct with NAD + nicotinamide moiety and the assistant binding site of NAD + adenine moiety, respectively. In silico virtual screening is performed against a biogenic compound library to discover SaDHQS subpocket-specific inhibitors, which were then tested against both antibiotic-sensitive and antibiotic-resistant S. aureus strains by using in vitro susceptibility test. The activity profile of hit compounds has no considerable difference between the antibiotic-sensitive and -resistant strains. The subpocket 1-specific inhibitors exhibit a generally higher activity than subpocket 2-specific inhibitors, and they also hold a strong selectivity between their cognate and noncognate subpockets. Dynamics and energetics analyses reveal that the SaDHQS active site prefers to interact with amphipathic and polar inhibitors by forming multiple hydrogen bonds and van der Waals packing at the complex interfaces of the two subpockets with their cognate inhibitors.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fósforo-Oxigênio Liases/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NAD/metabolismo , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/metabolismo
8.
Sci Rep ; 8(1): 17439, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487577

RESUMO

The anti-tuberculosis (TB) agent IMB-T130 was speculated to be a multi-target compound. In this research, we found that IMB-T130 inhibits the catalytic activity of Mycobacterium tuberculosis 3-dehydroquinate synthase (MtDHQS), the enzyme in the second step of the shikimate pathway. IMB-T130 was identified as a selective inhibitor of MtDHQS with an IC50 value of 0.87 µg/mL. The interaction between the compound and protein was analysed by surface plasmon resonance and circular dichroism. Based on the in silico molecular docking results, the essential amino acids in the binding pocket were then confirmed by site-directed mutagenesis. Overexpression of DHQS reduced the antibacterial activity of IMB-T130 in cells, verifying that DHQS is the target of IMB-T130. IMB-T130 inhibited standard and drug-resistant M. tuberculosis strains by targeting DHQS. Our findings improve our understanding of MtDHQS and make it to be a potential target for new anti-TB drug discovery.


Assuntos
Antituberculosos/química , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Fósforo-Oxigênio Liases/química , Animais , Antituberculosos/farmacocinética , Catálise , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacocinética , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Mycobacterium tuberculosis/genética , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Ratos , Proteínas Recombinantes/química
9.
Methods Mol Biol ; 1657: 431-453, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28889312

RESUMO

One of the most important signals involved in controlling biofilm formation is represented by the intracellular second messenger 3',5'-cyclic diguanylic acid (c-di-GMP). Since the pathways involved in c-di-GMP biosynthesis and breakdown are found only in bacteria, targeting c-di-GMP metabolism represents an attractive strategy for the development of biofilm-disrupting drugs. Here, we present the workflow required to perform a structure-based design of inhibitors of diguanylate cyclases, the enzymes responsible for c-di-GMP biosynthesis. Downstream of the virtual screening process, detailed in the first part of the chapter, we report the step-by-step protocols required to test the positive hits in vitro and to validate their selectivity, thus minimizing possible off-target effects.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Fósforo-Oxigênio Liases/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Cromatografia Líquida , Simulação por Computador , GMP Cíclico/análogos & derivados , GMP Cíclico/química , GMP Cíclico/metabolismo , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Conformação Molecular , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/química , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Análise Espectral
10.
Sci Rep ; 6: 25445, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150552

RESUMO

Cyclic di-AMP has emerged as an important signaling molecule that controls a myriad of functions, including cell wall homeostasis in different bacteria. Polyphenols display various biological activities and tea polyphenols in particular have been shown to possess among other properties antioxidant and antibacterial activities. Certain tea polyphenols, such as catechin and epigallocatechin gallate, have been used to augment the action of traditional antibiotics that target the cell wall. Considering the expanding role played by cyclic dinucleotides in bacteria, we investigated whether the action of polyphenols on bacteria could be due in part to modulation of c-di-AMP signaling. Out of 14 tested polyphenols, tannic acid (TA), theaflavin-3'-gallate (TF2B) and theaflavin-3,3'-digallate (TF3) exhibited inhibitory effects on B. subtilis c-di-AMP synthase, DisA. TF2B and TF3 specifically inhibited DisA but not YybT (a PDE) whilst TA was more promiscuous and inhibited both DisA and YybT.


Assuntos
Inibidores Enzimáticos/metabolismo , Fósforo-Oxigênio Liases/antagonistas & inibidores , Polifenóis/metabolismo
11.
Curr Genet ; 62(4): 731-738, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27074767

RESUMO

Bacteria can sense environmental cues and alter their physiology accordingly through the use of signal transduction pathways involving second messenger nucleotides. One broadly conserved second messenger is cyclic-di-AMP (c-di-AMP) which regulates a range of processes including cell wall homeostasis, potassium uptake, DNA repair, fatty acid synthesis, biofilm formation and central metabolism in bacteria. The intracellular pool of c-di-AMP is maintained by the activities of diadenylate cyclase (DAC) and phosphodiesterase (PDE) enzymes, as well as possibly via c-di-AMP export. Whilst extracellular stimuli regulating c-di-AMP levels in bacteria are poorly understood, recent work has identified effector proteins which directly interact and alter the activity of DACs. These include the membrane bound CdaR and the phosphoglucosamine mutase GlmM which both bind directly to the membrane bound CdaA DAC and the recombination protein RadA which binds directly to the DNA binding DisA DAC. The genes encoding these multiprotein complexes are co-localised in many bacteria providing further support for their functional connection. The roles of GlmM in peptidoglycan synthesis and RadA in Holliday junction intermediate processing suggest that c-di-AMP synthesis by DACs will be responsive to these cellular activities. In addition to these modulatory interactions, permanent dysregulation of DAC activity due to suppressor mutations can occur during selection to overcome growth defects, rapid cell lysis and osmosensitivity. DACs have also been investigated as targets for the development of new antibiotics and several small compound inhibitors have recently been identified. This review aims to provide an overview of how c-di-AMP synthesis by DACs can be regulated.


Assuntos
Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mutação , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
12.
Chem Commun (Camb) ; 52(19): 3754-7, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26824279

RESUMO

C-di-AMP synthases are essential in several bacteria, including human pathogens; hence these enzymes are potential antibiotic targets. However, there is a dearth of small molecule inhibitors of c-di-AMP metabolism enzymes. Screening of 2000 known drugs against DisA has led to the identification of suramin, an antiparasitic drug as potent inhibitor of c-di-AMP synthase.


Assuntos
Antiparasitários/farmacologia , Inibidores Enzimáticos/farmacologia , Fósforo-Oxigênio Liases/antagonistas & inibidores , Suramina/farmacologia
13.
J Bacteriol ; 198(1): 147-56, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416830

RESUMO

UNLABELLED: Biofilm formation is responsible for increased antibiotic tolerance in pathogenic bacteria. Cyclic di-GMP (c-di-GMP) is a widely used second-messenger signal that plays a key role in bacterial biofilm formation. c-di-GMP is synthesized by diguanylate cyclases (DGCs), a conserved class of enzymes absent in mammals and hence considered attractive molecular targets for the development of antibiofilm agents. Here, the results of a virtual screening approach aimed at identifying small-molecule inhibitors of the DGC PleD from Caulobacter crescentus are described. A three-dimensional (3D) pharmacophore model, derived from the mode of binding of GTP to the active site of PleD, was exploited to screen the ZINC database of compounds. Seven virtual hits were tested in vitro for their ability to inhibit the activity of purified PleD by using circular dichroism spectroscopy. Two drug-like molecules with a catechol moiety and a sulfonohydrazide scaffold were shown to competitively inhibit PleD at the low-micromolar range (50% inhibitory concentration [IC50] of ∼11 µM). Their predicted binding mode highlighted key structural features presumably responsible for the efficient inhibition of PleD by both hits. These molecules represent the most potent in vitro inhibitors of PleD identified so far and could therefore result in useful leads for the development of novel classes of antimicrobials able to hamper biofilm formation. IMPORTANCE: Biofilm-mediated infections are difficult to eradicate, posing a threatening health issue worldwide. The capability of bacteria to form biofilms is almost universally stimulated by the second messenger c-di-GMP. This evidence has boosted research in the last decade for the development of new antibiofilm strategies interfering with c-di-GMP metabolism. Here, two potent inhibitors of c-di-GMP synthesis have been identified in silico and characterized in vitro by using the well-characterized DGC enzyme PleD from C. crescentus as a structural template and molecular target. Given that the protein residues implied as crucial for enzyme inhibition are found to be highly conserved among DGCs, the outcome of this study could pave the way for the future development of broad-spectrum antibiofilm compounds.


Assuntos
Catecóis/química , Caulobacter crescentus/enzimologia , Simulação por Computador , Descoberta de Drogas/métodos , Proteínas de Escherichia coli/antagonistas & inibidores , Modelos Biológicos , Fósforo-Oxigênio Liases/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Moleculares , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Reprodutibilidade dos Testes
14.
ChemMedChem ; 10(12): 2090-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26435072

RESUMO

2-Methylerythritol 2,4-cyclodiphosphate synthase (IspF) is an essential enzyme for the biosynthesis of isoprenoid precursors in plants and many human pathogens. The protein is an attractive target for the development of anti-infectives and herbicides. Using a photometric assay, a screen of 40 000 compounds on IspF from Arabidopsis thaliana afforded symmetrical aryl bis-sulfonamides that inhibit IspF from A. thaliana (AtIspF) and Plasmodium falciparum (PfIspF) with IC50 values in the micromolar range. The ortho-bis-sulfonamide structural motif is essential for inhibitory activity. The best derivatives obtained by parallel synthesis showed IC50 values of 1.4 µm against PfIspF and 240 nm against AtIspF. Substantial herbicidal activity was observed at a dose of 2 kg ha(-1) . Molecular modeling studies served as the basis for an in silico search targeted at the discovery of novel, non-symmetrical sulfonamide IspF inhibitors. The designed compounds were found to exhibit inhibitory activities in the double-digit micromolar IC50 range.


Assuntos
Arabidopsis/enzimologia , Inibidores Enzimáticos/química , Fósforo-Oxigênio Liases/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Sulfonamidas/química , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Concentração Inibidora 50 , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo
15.
J Med Chem ; 58(20): 8269-84, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26426545

RESUMO

Cyclic di-GMP (c-di-GMP) is a widespread second messenger that plays a key role in bacterial biofilm formation. The compound's ability to assume multiple conformations allows it to interact with a diverse set of target macromolecules. Here, we analyzed the binding mode of c-di-GMP to the allosteric inhibitory site (I-site) of diguanylate cyclases (DGCs) and compared it to the conformation adopted in the catalytic site of the EAL phosphodiesterases (PDEs). An array of novel molecules has been designed and synthesized by simplifying the native c-di-GMP structure and replacing the charged phosphodiester backbone with an isosteric nonhydrolyzable 1,2,3-triazole moiety. We developed the first neutral small molecule able to selectively target DGCs discriminating between the I-site of DGCs and the active site of PDEs; this molecule represents a novel tool for mechanistic studies, particularly on those proteins bearing both DGC and PDE modules, and for future optimization studies to target DGCs in vivo.


Assuntos
GMP Cíclico/análogos & derivados , GMP Cíclico/síntese química , Proteínas de Escherichia coli/antagonistas & inibidores , Fósforo-Oxigênio Liases/antagonistas & inibidores , Triazóis/síntese química , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , GMP Cíclico/farmacologia , Desenho de Fármacos , Guanina/química , Indicadores e Reagentes , Modelos Moleculares , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato
16.
PLoS One ; 9(10): e110912, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360685

RESUMO

Large-scale production of bis-3'-5'-cyclic-di-GMP (c-di-GMP) would facilitate biological studies of numerous bacterial signaling pathways and phenotypes controlled by this second messenger molecule, such as virulence and biofilm formation. C-di-GMP constitutes also a potentially interesting molecule as a vaccine adjuvant. Even though chemical synthesis of c-di-GMP can be done, the yields are incompatible with mass-production. tDGC, a stand-alone diguanylate cyclase (DGC or GGDEF domain) from Thermotoga maritima, enables the robust enzymatic production of large quantities of c-di-GMP. To understand the structural correlates of tDGC thermostability, its catalytic mechanism and feedback inhibition, we determined structures of an active-like dimeric conformation with both active (A) sites facing each other and of an inactive dimeric conformation, locked by c-di-GMP bound at the inhibitory (I) site. We also report the structure of a single mutant of tDGC, with the R158A mutation at the I-site, abolishing product inhibition and unproductive dimerization. A comparison with structurally characterized DGC homologues from mesophiles reveals the presence of a higher number of salt bridges in the hyperthermophile enzyme tDGC. Denaturation experiments of mutants disrupting in turn each of the salt bridges unique to tDGC identified three salt-bridges critical to confer thermostability.


Assuntos
Proteínas de Escherichia coli/química , Fósforo-Oxigênio Liases/química , Thermotoga maritima/enzimologia , Estabilidade Enzimática , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Temperatura Alta , Mutação , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/genética , Desnaturação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
17.
J Med Chem ; 57(23): 9740-63, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25210872

RESUMO

Important pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum, the causative agents of tuberculosis and malaria, respectively, and plants, utilize the 2C-methyl-D-erythritol 4-phosphate (MEP, 5) pathway for the biosynthesis of isopentenyl diphosphate (1) and dimethylallyl diphosphate (2), the universal precursors of isoprenoids, while humans exclusively utilize the alternative mevalonate pathway for the synthesis of 1 and 2. This distinct distribution, together with the fact that the MEP pathway is essential in numerous organisms, makes the enzymes of the MEP pathway attractive drug targets for the development of anti-infective agents and herbicides. Herein, we review the inhibitors reported over the past 2 years, in the context of the most important older developments and with a particular focus on the results obtained against enzymes of pathogenic organisms. We will also discuss new discoveries in terms of structural and mechanistic features, which can help to guide a rational development of inhibitors.


Assuntos
Anti-Infecciosos/síntese química , Inibidores Enzimáticos/síntese química , Eritritol/análogos & derivados , Fosfatos Açúcares/antagonistas & inibidores , Aldose-Cetose Isomerases/antagonistas & inibidores , Anti-Infecciosos/farmacologia , Desenho de Fármacos , Eritritol/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Modelos Moleculares , Complexos Multienzimáticos/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores
18.
Biofouling ; 30(1): 17-28, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117391

RESUMO

Biofilm formation by pathogenic bacteria is an important virulence factor in the development of numerous chronic infections, thereby causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host's immune defenses and antibiotic therapy. An urgent need for new strategies to treat biofilm-based infections is critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. The absence of this signalling system in higher eukaryotes makes it an attractive target for the development of new anti-biofilm agents. In this study, the results of an in silico pharmacophore-based screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP are described. Four small molecules, LP 3134, LP 3145, LP 4010 and LP 1062 that antagonize these enzymes and inhibit biofilm formation by Pseudomonas aeruginosa and Acinetobacter baumannii in a continuous-flow system are reported. All four molecules dispersed P. aeruginosa biofilms and inhibited biofilm development on urinary catheters. One molecule dispersed A. baumannii biofilms. Two molecules displayed no toxic effects on eukaryotic cells. These molecules represent the first compounds identified from an in silico screen that are able to inhibit DGC activity to prevent biofilm formation.


Assuntos
Biofilmes/efeitos dos fármacos , Proteínas de Escherichia coli/antagonistas & inibidores , Fósforo-Oxigênio Liases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Simulação por Computador , GMP Cíclico/metabolismo , GMP Cíclico/fisiologia , Células HEK293 , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Bibliotecas de Moléculas Pequenas
19.
ACS Chem Biol ; 9(1): 183-92, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24134695

RESUMO

The rise of bacterial resistance to traditional antibiotics has motivated recent efforts to identify new drug candidates that target virulence factors or their regulatory pathways. One such antivirulence target is the cyclic-di-GMP (cdiGMP) signaling pathway, which regulates biofilm formation, motility, and pathogenesis. Pseudomonas aeruginosa is an important opportunistic pathogen that utilizes cdiGMP-regulated polysaccharides, including alginate and pellicle polysaccharide (PEL), to mediate virulence and antibiotic resistance. CdiGMP activates PEL and alginate biosynthesis by binding to specific receptors including PelD and Alg44. Mutations that abrogate cdiGMP binding to these receptors prevent polysaccharide production. Identification of small molecules that can inhibit cdiGMP binding to the allosteric sites on these proteins could mimic binding defective mutants and potentially reduce biofilm formation or alginate secretion. Here, we report the development of a rapid and quantitative high-throughput screen for inhibitors of protein-cdiGMP interactions based on the differential radial capillary action of ligand assay (DRaCALA). Using this approach, we identified ebselen as an inhibitor of cdiGMP binding to receptors containing an RxxD domain including PelD and diguanylate cyclases (DGC). Ebselen reduces diguanylate cyclase activity by covalently modifying cysteine residues. Ebselen oxide, the selenone analogue of ebselen, also inhibits cdiGMP binding through the same covalent mechanism. Ebselen and ebselen oxide inhibit cdiGMP regulation of biofilm formation and flagella-mediated motility in P. aeruginosa through inhibition of diguanylate cyclases. The identification of ebselen provides a proof-of-principle that a DRaCALA high-throughput screening approach can be used to identify bioactive agents that reverse regulation of cdiGMP signaling by targeting cdiGMP-binding domains.


Assuntos
Antibacterianos/farmacologia , Azóis/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Compostos Organosselênicos/farmacologia , Fósforo-Oxigênio Liases/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Antibacterianos/química , Azóis/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ação Capilar , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Isoindóis , Ligantes , Modelos Moleculares , Compostos Organosselênicos/química , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia
20.
FEBS Lett ; 587(17): 2806-17, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23816706

RESUMO

The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system. This study demonstrates that both types of enzyme targets, one acting via flux reduction and the other by metabolite accumulation, exist in P. falciparum MEP pathway. These groups of targets can be exploited for independent anti-malarial drugs.


Assuntos
Simulação por Computador , Eritritol/análogos & derivados , Modelos Químicos , Plasmodium falciparum/enzimologia , Terpenos/metabolismo , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/química , Algoritmos , Vias Biossintéticas , Inibidores Enzimáticos/química , Enzimas/química , Eritritol/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Cinética , Modelos Biológicos , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/química , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/química , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Transferases/antagonistas & inibidores , Transferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...